|
A central aim of human thermodynamics is to explain the system-delineated actions revolving existence, love, work, meaning, and purpose thermodynamically. |
“Human thermodynamics is the statistical mechanics of conservative dynamical systems of human molecules.”
A representative diagram of human thermodynamics, captioned as “the study of the relation between heat (force) and work (movement) and other forms of energy transformation involved in the process of human existence”, from the abstract poster presentation of American electrochemical engineer Libb Thims’ 2011 bioengineering thermodynamics lecture “How to Apply Thermodynamics in the Humanities: with Engineering Focus”. |
“Human thermodynamics is the application of mathematical formula and principles of thermodynamics to the economic and social sciences.”
A 1993 summary description of human thermodynamics by American mechanical engineer Bill Nye, better known as Bill Nye the science guy, of how people, historically, have used the laws of thermodynamics to explain various facets of human existence, from car wreck behaviors, to politics, to the process of falling in love. [36] |
“[Bazargan's] thermodynamics [of humans] is the mathematical expression of how human activity works according to a set of laws that are based on the relation of heat, time, and energy.”In sum of these various early excursions on the subject of human or social thermodynamics, one discerns the consensus view the laws of thermodynamics are the central universal laws found to have direct bearing on the function, activities, and governance of daily human movement. [2]
Left: American artist Zack Brown’s 2012 “Thermodynamics of Love” cartoon, from his Stickmen with Martinis blogspot, which he captions with a take on his view of a relationship as being like a closed thermodynamic system. [39] Right: A 21 Jun 2010 lecture by English biotechnologist Mark Janes who comments: “Human thermodynamics, in the future, I believe, is on the precipice of being the biggest overall unified scientific concept ever.” |
Similarly, in 1954, English physicist Vera Daniel gave his opinion on the application of thermodynamics to society by Polish physical economist Leon Winiarski, in the 1890s, and German physical chemist Wilhelm Ostwald, in the 1900s, by commented that: [24]
“The thermodynamic[s] [applied to humanity] case would involve the author into calculations of fantastic difficulty, if he were to take it seriously, and it is also a comparison of the complicated with the complicated.”
Left: in 1885, Scottish physicist William Thomson (1824-1907) considered an afternoon excursion with his wife, taking time away from his studies, to be a second law governed instance of the "dissipation of energy."Right: in 1909, American historian Henry Adams (1838-1918) stated that he would walk a several million miles to be able to go back in time and hear Thomson's (adjacent) views on the thermodynamics of society. |
See main: Thermodynamics anecdotesIn 1885, while musing upon the subject of thermodynamics one day, Scottish physicist William Thomson suddenly realized that his wife was discussing plans for an afternoon excursion: [37]
“At what time,” he asked, glancing up, “does the dissipation of energy begin?”
“I have been studying science for ten years past, with keen interest, noting down my phrases of mind each year; and every new scientific method I try, shortens my view of the future. The last—thermodynamics—fetches me out on sea-level within ten years. I’m sorry Lord Kelvin (William Thomson) is dead. I would travel a few thousand-million miles to discuss with him the thermodynamics of socialistic society. His law is awful in its rigidity and intensity of result.”
See main: What is life? (theories of existence)One of the earliest attempts at a solution to the question of "what is life", from a thermodynamic perspective, was made by Austrian physicist Ludwig Boltzmann who, in his 1886 discussion of philosophical problems connected to thermodynamics, famously quipped "life is a struggle for entropy", as is explained in the following quote: [12]
“The transition of heat from sun to earth [can drive] the performance of work, like the transition of water from the boiler to the cooling instillation [and] the struggle for existence of animate beings [is a] a struggle for entropy.”
| |
Left: a Carnot cycle system view of a working body surface section of a rotating earth, put in contact, alternately, with a hot body (day time) then a cold body (night time), diurnally, according to which daily "work" is done by the actions of Boerhaave's law. Right: a Carnot engine diagram of a confined body of working substance (molecules) in a piston-and-cylinder heat engine, alternately heated and cooled, in a cycle: the basic model for any working system of humans (human molecules) confined to a surface section of the earth, in its diurnal solar cycle. |
Captioned image from 1979 famous article "The Social Thermodynamics of Ilya Prigogine" by Wil Lepkowski. [23] |
See main: Human system, Human energy, Social energy, First law, etc.The starting point for any thermodynamic analysis of human life, is the first law energy balance in respect to earth-bound "working systems" of chemical species subjected to daily solar cycles of heat input. In particular, each day, due to the configuration of the solar system, biospheric portions of the earth's surface, during its rotation, are put in contact diurnally with a hot body (the sun) and cold body (the night sky) on an alternating basis, according to which heat Q flows through various partitioned off human social systems, e.g. one small city, that each function as "working bodies", i.e. any partitioned off system through which heat may flow, of molecular species (e.g. a set of human species). [10] In the human point of view, during each cycle, work-output is produced cyclically through the operation of economic, socially-mediated, substrate-attached, human molecular interactions in the form of multiple coupled social heat engines. [1]
See main: Human entropy, Social entropy, Economic entropy, Second law, etc.After analyzing any human interaction according to the first law, a next step is to study the human process from an entropy point of view. This is one of the more difficult aspects of human thermodynamic analysis, leading often to unfounded interpretations of "disorder", "pollution", "chaos", etc., as well as a number of newly coined terms such as social entropy, human entropy, economic entropy, among others. The only correct way, however, to translate the second law of thermodynamics into the study and analysis of human actions is to build directly on German physicist Rudolf Clausius' 1865 thermodynamics textbook Mechanical Theory of Heat, following this path through into modern chemical thermodynamics. Most, who attempt to formulate a second law interpretation of human activity, never read Clausius, but instead crudely attempt to build formulations on tertiary interpretations of Clausius' work, often leading to absurd conclusions, the pinnacle example being the conclusion that "life tends towards chaos", which is obviously a backwards trend then what is observed.
Human thermodynamics pioneers video (3:24-min) by American chemical engineer Libb Thims (Jan 29, 2009). |
See main: Combined law of thermodynamicsThe first and second law of thermodynamics are often combined into one expression, called the "combined law", particularly for the case of isothermal (constant temperature) isobaric (constant pressure) processes, as happens to be the case for most processes occuring on the surface of the earth. This amounts to a statement of the effect that a natural process will only occur or proceed spontaneously (according to the spontaneity criterion) if it actuates, in the system or in the path of the process, a decrease in the Gibbs free energy G. This logic is often truncated as follows:
Chapter 5 from English engineer Bryan Donkin's 1894 treatise on the work of Gustave Hirn in which the term 'human thermodynamics' is coined. [15] |
See main: History of human thermodynamicsThe earliest ideas concerning human thermodynamics, i.e. how the laws of thermodynamics relate to human life, began about 1852 when William Thomson (Lord Kelvin) published his "On a Universal Tendency in Nature to the Dissipation of Mechanical Energy", in which he set forth the view, for many superficial readers, that all natural systems tend to down grade in energy over time and that this logic defines the course of human history. [5] In the years to follow Thomson's publication, outlining the view that "dissipation", often seem as embodied in the second law, applies to the entire universe, over 300+ human thermodynamics pioneers began to profess their views in various spheres of publication in the humanities.
Left: 2004 cover-version to volume one (of three) unfinished-manuscript Human Thermodynamics (started in 2002), by American chemical engineer Libb Thims, of which about a dozen copies were hand printed and given to reviewers. Right: 2009 cover design for possible future hard-copy multi-volume publication of the EoHT which is comprised of 1,500+ articles of webpages (each webpage containing 1-30 pages of printed material) as of 2010. |
“Most such subjects [socio-thermodynamics] are more to the future of thermodynamics rather than to its history.”
In the current view, he points out that “they are struggling to be taken seriously, and to obtain admission into the field.” [11]
A new 2010 test-stage online course on human thermodynamics, at UDemy.com, taught by American chemical engineer Libb Thims. [32] |
See main: Human thermodynamics educationThe teaching of human thermodynamics in college is not yet a fully-established field. The subject has been taught in various hues over the last century or so, beginning with Polish social-economist Leon Winiarski who taught a course called “Social Mechanics”, based on the works of Rudolf Clausius and Joseph Lagrange, at the University of Geneva over a period of six years (1894-1900), as outlined in his 1900 article "The Teaching of Pure Political Economics and Social Mechanics in Switzerland", a methodology as outlined in his collected-works treatise Essay on Social Mechanics. [33]
See main: Human thermodynamics quotesThe following is a chronological listing of the use of the term "human thermodynamics" since the inception of thermodynamics (1850):
Quote | Photo | |
“The creation of thermodynamics is a new era in the development of all science, and not just that of only physical-mechanical aspects. She came to enforce laws and defined a clear interpretation of a host of phenomena which seemed to have no other rule than chance. To identify the various species of elements that constitute beings, and who, by their mutual relations, give rise to phenomena, it was natural to start from the very principles that have somehow changed our science, and linked them into a single beam. From these principles we can draw philosophical and implications.” — Gustave Hirn (1868), Philosophical Implications of Thermodynamics [29] | ||
“The basic and simple ideas, from which the laws of energy spring, as they stem from the roots of natural science, seems a more extensive exploitation to be able to explain things that have to do with transformations and transitions not only in science alone, but among other things, economics.”— Georg Helm (1887), The Doctrine of Energy [35] | ||
“Human thermodynamics is the study of vital heat of the body; experiments on the amount of heat developed by human beings when in action, measurement of oxygen inhaled; respiration shown to be the principle source of heat.”— Bryan Donkin (1893), on the work of Gustav Hirn [15] | ||
“The energy of social transformation is submitted to the same laws as the energy of the universe. These are the laws of thermodynamics. We can thus represent a primitive horde, as a material system in movement, the driving forces that cause the movement being hunger and love or attraction. Similar to how a cannonball meeting an obstacle transforms the energy contained in its mass movement into internal heat, energy of light, electricity, etc., so to do the members of the movement of the crude social mass transform when meeting barriers from the natural surroundings and other tribes, represented by economic, political, legal, moral, aesthetic, religious, and intellectual needs. There is transformation of the energy of the mass social movement in internal energies, psychologies, but there is no gain or loss of energy. Moreover this transformation is continuous across social system. Just as any movement of any mass of the universe is accompanied by production of heat, so to are the masses of biology and society transformed into mental phenomena of different kinds. Here we can apply the first principle of thermodynamics: that of the equivalence (the principle of Mayer).”— Leon Winiarski (1898), “Essay on Social Mechanics: Social Energy and its Measurements.” [31] | ||
“I intend to seek analogies between social and physical movements, therefore, to compare the mechanics of social science with thermodynamics. I owe you some explanations on this design. There is need to establish a new science if analogies and relations that unite science are already established. In doing so, the human mind obeys the feeling that he has the web link and continuity of natural phenomena at the same time, if using the similarities found it is possible to determine more accurately the specific content of the new science and to classify the essential elements, then they serve it as it touchstone of human theories.”— Maurice Hauriou (1899), Lessons on Social Movement [30] | ||
“Through determining some kind of laws of human thermodynamics, we shall be more successful in doing good in the world. I am going to try to see what these laws of human thermodynamics are; of course they cannot be expected to have the hard outline of the laws of physical science, but still I think some of them can be given a fairly definite form.” — C.G. Darwin (1952), The Next Million Years [1] | ||
1956 | “Human thermodynamics is the application of mathematical formula and principles of thermodynamics to the economic and social sciences.”— Mehdi Bazargan (1956), Thermodynamics of Humans [27] |
“Based on identities of adhesion, individuals are seen as a mass, as numbers, independent of their molecular wealth. The molar group organizes a kind of human thermodynamics, an exteriorized channeling of behavior and character that squanders individual qualities.”— Pierre Levy (1994) [16]
“Our school tragedies are an early warning of something inherent in the laws of human thermodynamics.”— John Gatto (2000) [19]
“The conclusions of hierarchical thermodynamics correspond excellently to Libb Thims’ conception of the thermodynamics of human molecules.”— Georgi Gladyshev (2006) [20]
“The novel [Doctor Faustus] is in one sense a study in human thermodynamics—what it takes to make certain kinds of total and fundamental changes. In totally starting over, as opposed to gradually starting evolution, the Nazi experience suggests that what is necessary is a collective quantity of energy that is available only in the primitive and unconscious human energy centers, those energy centers deposited by hundreds of thousands of years of survival tactics—the reptile centers in our brains.”— John Anderson (2006) [21]
“Human thermodynamics [is] the chemical thermodynamic study of human molecular reaction life.”— Libb Thims (2007) [1]
“If we accept Thims’ logic of human thermodynamics as a viable explanatory framework, which it very well is, romantic bonding then becomes the subject matter of quantum electrodynamics (QED), an aspect of particle physics that traces human attachment and bonding to the interactions of photons and electrons.”— Satch Ejike (2008) [22]
Cover of Romanian electronic music producer Bogdan Anghel’s 2010 EP Human thermodynamics, featuring four tracks: (1) pressure correlations 5:27, (2) phase transition 7:10, (3) aerospace race 7:07, and (4) transport phenomena 8:03; songs which, as depicted on the album cover, are intended to represent a sort of semi gas-phase, semi surface-attached depiction of human particles or human molecules, flying about and interacting sort of like the particles of an ideal gas in a state of Utopian natural harmony with the earth. [28] |