American physicist Wayne Saslow's 1999 thermodynamic analogies, i.e. so-labeled "analogies" between thermodynamic and economic systems; one of many historical human thermodynamic variables table, which date back to American economist Irving Fisher (1892). [1] |
“A well-drawn analogy between two surprisingly dissimilar concepts can not only be helpful in the classroom, it can be pleasing and instructive on its own merits, as long as one is cognizant of its limitations. On the surface, Rossini’s analogy relating enthalpy, entropy, and the equilibrium constant to freedom and security in the modern nation-state seems like a good example of an unusual and instructive comparison. I was initially intrigued. Using the thermodynamic conclusion that (a) a reaction’s spontaneity (or Keq) increases when either ∆H gets more negative (stronger security) or ∆S gets more positive (more freedom), Rossini analogized that (b) “One cannot have a maximum of freedom and a maximum of security at the same time.” Sadly, point (a), although true, does not support point (b), not even in the limited realm of chemical thermodynamics, much less in the broader realm of political governance.”— Todd Silverstein (2006), “State Functions vs State Governments”, Jun [6]
“The analogy I have cited of the gas laws is the simplest example that is furnished by statistical mechanics, and it is only fair to mention that, when the subject is pursued further, it does get a good deal more complicated. Thus much greater difficulties arise in considering how the gas can condense into a liquid or solid, but it would not be profitable to follow the analogy into these intricacies. We may, so to speak, reasonably hope to find the Boyle's Law which controls the behavior of those very complicated molecules, the members of the human race, and from this we should be able to predict something of man's future. The possibility depends on finding out whether there are for humanity any similar internal conditions, which would be analogous to the condition of being a conservative dynamical system, and external conditions analogous to the containing vessel.
In the gas, the external conditions were given by the containing vessel, and the analogy here is obviously the earth itself. The internal principle, which is to be analogous to the property of being conservative dynamical systems, of course lies deeper. It must depend on the laws governing the nature and behaviour of the human molecules. When I compare human beings to molecules, the reader may feel that this is a bad analogy, because unlike a molecule, a man has free will, which makes his actions unpredictable. Though the individual collisions of the human molecules may be a little less predictable than those of gas molecules—which, as I have said, do not have to be considered in detail either—the census returns show that for a large population the results average out with great accuracy. The internal principle then of the human molecules is human nature itself. On the analogy between human history and the molecules of a gas, the different civilizations are to be ranked as fluctuations from the average.”
“The purity and precision of thermodynamics has been maintained on the strength of its validity only as a collection of limiting laws for infinitely large systems undergoing infinitely slow changes. However, the interest in thermodynamics has always been based on the great relevance for finite real systems undergoing changes that are fast on our everyday time scale and slow only on the microscopic time scale of atomic motion. Thus we are merely extending the beam of insight from the lifeless behaviors of inanimate matter to the vivid complexities of human behavior. In the final analysis this far-reaching analogy rests on the fact that the basic elements of the description of atoms, molecules, and matter can be scaled up to the realm of living organisms without changes other than in the complexity of the systems and their behavior.”
“Oh snap. Anyway, some of the basic ideas that came out of the thermodynamic analogy seem to be that goods are extensive measures like energy or volume and prices are intensive measures like pressure or temperature. Hey, that's what I found! Prices are like pressure, the quantity supplied is like volume and the quantity demanded is like energy in the information transfer model.”
“The formal mathematical analogy between classicalthermodynamics and mathematical economic systems has nowbeen explored. This does not warrant the commonly metattempt to find more exact analogies of physical magnitudes—such as entropy or energy—in the economic realm. Whyshould there be laws like the first or second laws ofthermodynamics holding in the economic realm? Why should "utility'' be literally identified with entropy, energy, or anythingelse? Why should a failure to make such a successful identification lead anyone to overlook or deny the mathematicalisomorphism that does exist between minimum systems thatarise in different disciplines?”— Paul Samuelson (1960), "Publication"; cited by Jason Smith [2]
“This is all just a horrendous analogy. Chemical laws apply to humans, but our behavior is more complex than something that can be modeled with a couple of thermodynamic equations. A + B → AB is just a pretentious way of stating something we already know; it tells us absolutely nothing new.”— Ryan Grannell (2011), “Category: Human Chemistry” [5]